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ABSTRACT 4'

The result of this paper is a generalization of eur characterization of

the limits of multivariate cardinal splines. Let Mn denote the n-fold

convolution of a compactly supported funct~.0 M c L2 (0) and denote by r

{n I IA j)M n. j) c fc (Z~
C z

the span of translates of Mn. We prove that there exists a set n with

Vold(f() = (2w)d such that for any f e L2 (35),

dist(fSn) + 0 as n +

if and only if the support of the Fourier transform of f is contained in
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SIGNIFICANCE AND EXPLANATION

In recent reports (#2485, #2686] we have studied the convergence of

interpolation with box-splines as their degree tends to infinity. The result

stated in the abstract generalizes one of our main theorems. Although more

general, the proof is quite short and the essential features of our earlier

arguments become more apparent.
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CONVERGENCE OF CARDINAL SERIES

Carl de Boor0 ). Klaus H61ig0,2 ) and Sherman Riemenschneider (3 )

N

1. Introduction. We extract the essential features of our earlier arguments [1-4i
concerning the limits of box-splines as their degree tends to infinity. Somewhat surprisingly,
the resulting discussion, although covering a more general situation, is very much shorter.

We start with a compactly supported (nonzero) L2-function M on Rd for which the
Fourier transform M eh:/ ) = fM(x) exp (-ixC)dx

satisfies
IM(0)1 = O(I 1c), I -+ 00. ()

With
A, :=M*'"M -

denoting the n-fold convolution of M, we consider approximation in L 2 from the span

Sn:={Z c(j)M,,(.-j) c E 2 (Zd)}

JEZ- 
,

of the integer translates of Mn. We wish to characterize the class

S,, := {f E L 2 (Rd) lim dist(f, S) = }.
n. c

For this we introduce the set

E R d: 1M( 2 j)< iJ( )I, j E Zd\o}

and establish the following

Proposition. fl is a fundamental domain, i.e.

n n (n + 27rj) = 0, j # 0

Uj (n + 27rj) =Rd.

The class S consists of functions of exponential type characterized by the set fl.

Theorem. f E S,, iff suppf C fl.

(1) Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
(2) Supported by International Business Machines Corporation and National Science

Foundation Grant No. DMS-8351187.
(3) Supported by NSERC Canada through Grant #A 7687.
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2. Proof of the Proposition. The assumption (1) implies that for any positive C,

#{j : IM(f + 21rj)l _ C} < oo. (2)

Let
D:={ E Rd :M( 1 ) 0).

On D, the quotient

is well defined. In particular,

fl--{CER d :lai(C)l < Ifor iE Zd\0}.

Lemma. For all C E Rd there is j E Zd such that C + 27rj E A1.

Proof. Since M is an entire function, it is sufficient to prove this for C E D. The set

J( ) := {j E : ( + 2?rj)I = sup I-f (C + 27rk)I}
k

is finite and nonempty, by (2). Hence we are done unless #J(C') > 1 for all C' in some
neighborhood of C. In this case at least one of the real analytic functions

fh -f

with
fk := IM, (. + 2 rk)I12

vanishes on some open set, hence must vanish identically. But this implies that

Ij1 = Mk(. + 27rr)l

for r := j - j' $ 0, contradicting (1).

To finish the proof of the Proposition, assume that f and e + 2rj are both in fl. Then,
the assumption j # 0 leads to the contradiction

1 > 1/IM(C + 27rj)IM( )I Iff(C + 27i - 27rj)/MI(e + 27rj)l > 1.

2
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3. Proof of the Theorem. We introduce the trigonometric polynomial

Pn(e) := M,(j)exp(ije) = M(e + 2irj) = Af ( ) Z(aj(C))n

with the last equality holding, at least, on D. For any j # 0 and C E fl,
jaj(C)I !- 1 - cU, e) (3.1)

for some positive eU, ), while, by (1) and (2),

Iaj(e)i < 1/(l + Clij) (3.2)

for some positive C uniformly for all but finitely many j. Consequently, for e fl,

Pn(W n(e) = E(aj( ))' -- 1, n - oo, (4)

and the convergence is uniform on compact subsets fl1 of fl. This shows, in particular,
that, for large enough n, Pn does not vanish on such n

(i) Assume that f E L 2 and suppi C f) and denote by X the characteristic function of such
a set 011. Since 0 is a fundamental domain, we can expand fX/Pn in a Fourier series,

(x/P,,)( ) = Ecn(j)exp(ije), t E 0,

with coefficients Cn E L 2. This implies that

Sn := Ecn(j)Mn(- - ) E L 2.
3

Since j vanishes outside fl,
If - 1 (Rd) I in - + E IM( + 27ri)i12

,'#0

The first term is estimated by

If- inIL2 (f) 5 If- XfIL(O) + Ix - xfM/PnIL(n).

The first norm on the right hand side is small if f0 is chosen close to fl. For fixed f0l, the
second norm is small by (4) if n is sufficiently large.
For the terms in the sum it follows from (2) and (3) that

IMCn(" + 27rj)(fX/P)IL2(n) = I(a,)nMn,(fxIPn)IL2 (0)
< (jai lL..(O,))"lM.IFnIL.(n, il2l, (n,) --4 0, n - oo.

(ii) Assume that Sn = c, Cn(j)M,( - j) converges to f in L 2 . From

gn(t + 27rj) = (a(e)) n.1), E D,

we see that
SI L,2(0,+2, .) _< (lajl L.(O,))n i9nIL2 - O.

It follows from (3) that, as an element of L 2, f vanishes off f0.

3
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ABSTRACT (cont.)

Sn CO {W d C(j)Mn( - J) c e t 2 (Zd)}

the span of translates of Mn . We prove that there exists a set A with

vol (l) = (2w)d such that for any f e L2 (3!),

dist(fSn) + 0 as n +

if and only if the support of the Fourier transform of f is contained in
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